VAR-LiNGAM¶
-
class
lingam.
VARLiNGAM
(lags=1, criterion='bic', prune=False, ar_coefs=None, lingam_model=None, random_state=None)[source]¶ Implementation of VAR-LiNGAM Algorithm [1]
References
[1] Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, Patrik O. Hoyer. Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity. Journal of Machine Learning Research, 11: 1709-1731, 2010. -
__init__
(lags=1, criterion='bic', prune=False, ar_coefs=None, lingam_model=None, random_state=None)[source]¶ Construct a VARLiNGAM model.
Parameters: - lags (int, optional (default=1)) – Number of lags.
- criterion ({‘aic’, ‘fpe’, ‘hqic’, ‘bic’, None}, optional (default='bic')) – Criterion to decide the best lags within
lags
. Searching the best lags is disabled ifcriterion
isNone
. - prune (boolean, optional (default=False)) – Whether to prune the adjacency matrix or not.
- ar_coefs (array-like, optional (default=None)) – Coefficients of AR model. Estimating AR model is skipped if specified
ar_coefs
. Shape must be (lags
, n_features, n_features). - lingam_model (lingam object inherits 'lingam._BaseLiNGAM', optional (default=None)) – LiNGAM model for causal discovery. If None, DirectLiNGAM algorithm is selected.
- random_state (int, optional (default=None)) –
random_state
is the seed used by the random number generator.
-
adjacency_matrices_
¶ Estimated adjacency matrix.
Returns: adjacency_matrices_ – The adjacency matrix of fitted model, where n_features is the number of features. Return type: array-like, shape (lags, n_features, n_features)
-
bootstrap
(X, n_sampling)[source]¶ Evaluate the statistical reliability of DAG based on the bootstrapping.
Parameters: - X (array-like, shape (n_samples, n_features)) – Training data, where
n_samples
is the number of samples andn_features
is the number of features. - n_sampling (int) – Number of bootstrapping samples.
Returns: result – Returns the result of bootstrapping.
Return type: TimeseriesBootstrapResult
- X (array-like, shape (n_samples, n_features)) – Training data, where
-
causal_order_
¶ Estimated causal ordering.
Returns: causal_order_ – The causal order of fitted model, where n_features is the number of features. Return type: array-like, shape (n_features)
-
estimate_total_effect
(X, from_index, to_index, from_lag=0)[source]¶ Estimate total effect using causal model.
Parameters: - X (array-like, shape (n_samples, n_features)) – Original data, where n_samples is the number of samples and n_features is the number of features.
- from_index – Index of source variable to estimate total effect.
- to_index – Index of destination variable to estimate total effect.
Returns: total_effect – Estimated total effect.
Return type: float
-
fit
(X)[source]¶ Fit the model to X.
Parameters: X (array-like, shape (n_samples, n_features)) – Training data, where n_samples
is the number of samples andn_features
is the number of features.Returns: self – Returns the instance itself. Return type: object
-
get_error_independence_p_values
()[source]¶ Calculate the p-value matrix of independence between error variables.
Returns: independence_p_values – p-value matrix of independence between error variables. Return type: array-like, shape (n_features, n_features)
-
residuals_
¶ Residuals of regression.
Returns: residuals_ – Residuals of regression, where n_samples is the number of samples. Return type: array-like, shape (n_samples)
-