LiM¶
-
class
lingam.
LiM
(lambda1=0.1, loss_type='mixed', max_iter=150, h_tol=1e-08, rho_max=1e+16, w_threshold=0.1)[source]¶ Implementation of LiM Algorithm [1]
References
[1] Zeng Y, Shimizu S, Matsui H, et al. Causal discovery for linear mixed data[C]//Conference on Causal Learning and Rea- soning. PMLR, 2022: 994-1009. -
__init__
(lambda1=0.1, loss_type='mixed', max_iter=150, h_tol=1e-08, rho_max=1e+16, w_threshold=0.1)[source]¶ Construct a LiM model.
Parameters: - lambda1 (float, optional (default=0.1)) – L1 penalty parameter.
- loss_type (str, (default='mixed')) – Type of distribution of the noise.
- max_iter (int, (default=150)) – Maximum number of dual ascent steps.
- h_tol (float, (default=1e-8)) – Tolerance parameter of the acyclicity constraint.
- rho_max (float, (default=1e+16)) – Maximum value of the regularization parameter rho.
- w_threshold (float (default=0.1)) – Drop edge if the weight btw. variables is less than w_threshold.
-
adjacency_matrix_
¶ Estimated adjacency matrix between mixed variables.
Returns: adjacency_matrix_ – The adjacency matrix of variables, where n_features
is the number of observed variables.Return type: array-like, shape (n_features, n_features)
-
fit
(X, dis_con)[source]¶ Fit the model to X with mixed data.
Parameters: - X (array-like, shape (n_samples, n_features)) – Training data, where
n_samples
is the number of samples andn_features
is the number of observed variables. - dis_con (array-like, shape (1, n_features)) – Indicators of discrete or continuous variables, where “1” indicates a continuous variable, while “0” a discrete variable.
Returns: self – Returns the instance of self.
Return type: object
- X (array-like, shape (n_samples, n_features)) – Training data, where
-