LiM
- class lingam.LiM(lambda1=0.1, loss_type='mixed', max_iter=150, h_tol=1e-08, rho_max=1e+16, w_threshold=0.1)[source]
Implementation of LiM Algorithm [1]
References
- __init__(lambda1=0.1, loss_type='mixed', max_iter=150, h_tol=1e-08, rho_max=1e+16, w_threshold=0.1)[source]
Construct a LiM model.
- Parameters:
lambda1 (float, optional (default=0.1)) – L1 penalty parameter.
loss_type (str, (default='mixed')) – Type of distribution of the noise.
max_iter (int, (default=150)) – Maximum number of dual ascent steps.
h_tol (float, (default=1e-8)) – Tolerance parameter of the acyclicity constraint.
rho_max (float, (default=1e+16)) – Maximum value of the regularization parameter rho.
w_threshold (float (default=0.1)) – Drop edge if the weight btw. variables is less than w_threshold.
- property adjacency_matrix_
Estimated adjacency matrix between mixed variables.
- Returns:
adjacency_matrix_ – The adjacency matrix of variables, where
n_features
is the number of observed variables.- Return type:
array-like, shape (n_features, n_features)
- fit(X, dis_con, only_global=False, is_poisson=False)[source]
Fit the model to X with mixed data.
- Parameters:
X (array-like, shape (n_samples, n_features)) – Training data, where
n_samples
is the number of samples andn_features
is the number of observed variables.dis_con (array-like, shape (1, n_features)) – Indicators of discrete or continuous variables, where “1” indicates a continuous variable, while “0” a discrete variable.
only_global (boolean, optional (default=False)) – If True, then the method will only perform the global optimization to estimate the causal structure, without the local search phase.
is_poisson (boolean, optional (default=False)) – If True, then the method will use poisson regression model to compute the log-likelihood in the local search phase.
- Returns:
self – Returns the instance of self.
- Return type:
object