CAM-UV

class lingam.CAMUV(alpha=0.01, num_explanatory_vals=2)[source]

Implementation of CAM-UV Algorithm [1]

References

[1]T.N.Maeda and S.Shimizu. Causal additive models with unobserved variables. In Proc. Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI). PMLR 161:97-106, 2021.
__init__(alpha=0.01, num_explanatory_vals=2)[source]

Construct a CAM-UV model.

Parameters:
  • alpha (float, optional (default=0.01)) – Alpha level.
  • num_explanatory_vals (int, optional (default=2)) – Maximum number of explanatory variables.
adjacency_matrix_

Estimated adjacency matrix.

Returns:adjacency_matrix_ – The adjacency matrix B of fitted model, where n_features is the number of features.
Return type:array-like, shape (n_features, n_features)