Source code for lingam.varma_lingam

"""
Python implementation of the LiNGAM algorithms.
The LiNGAM Project: https://sites.google.com/view/sshimizu06/lingam
"""

import itertools
import warnings

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.utils import check_array, resample
from statsmodels.tsa.statespace.varmax import VARMAX

from .base import _BaseLiNGAM
from .bootstrap import BootstrapResult
from .direct_lingam import DirectLiNGAM
from .hsic import hsic_test_gamma
from .utils import predict_adaptive_lasso, find_all_paths, calculate_total_effect


[docs] class VARMALiNGAM: """Implementation of VARMA-LiNGAM Algorithm [1]_ References ---------- .. [1] Yoshinobu Kawahara, Shohei Shimizu, Takashi Washio. Analyzing relationships among ARMA processes based on non-Gaussianity of external influences. Neurocomputing, Volume 74: 2212-2221, 2011 """
[docs] def __init__( self, order=(1, 1), criterion="bic", prune=True, max_iter=100, ar_coefs=None, ma_coefs=None, lingam_model=None, random_state=None, ): """Construct a VARMALiNGAM model. Parameters ---------- order : turple, length = 2, optional (default=(1, 1)) Number of lags for AR and MA model. criterion : {'aic', 'bic', 'hqic', None}, optional (default='bic') Criterion to decide the best order in the all combinations of ``order``. Searching the best order is disabled if ``criterion`` is ``None``. prune : boolean, optional (default=True) Whether to prune the adjacency matrix of lags. max_iter : int, optional (default=100) Maximm number of iterations to estimate VARMA model. ar_coefs : array-like, optional (default=None) Coefficients of AR of ARMA. Estimating ARMA model is skipped if specified ``ar_coefs`` and `ma_coefs`. Shape must be (``order[0]``, n_features, n_features). ma_coefs : array-like, optional (default=None) Coefficients of MA of ARMA. Estimating ARMA model is skipped if specified ``ar_coefs`` and `ma_coefs`. Shape must be (``order[1]``, n_features, n_features). lingam_model : lingam object inherits 'lingam._BaseLiNGAM', optional (default=None) LiNGAM model for causal discovery. If None, DirectLiNGAM algorithm is selected. random_state : int, optional (default=None) ``random_state`` is the seed used by the random number generator. """ self._order = order self._criterion = criterion self._prune = prune self._max_iter = max_iter self._ar_coefs = ( check_array(ar_coefs, allow_nd=True) if ar_coefs is not None else None ) self._ma_coefs = ( check_array(ma_coefs, allow_nd=True) if ma_coefs is not None else None ) self._lingam_model = lingam_model self._random_state = random_state
[docs] def fit(self, X): """Fit the model to X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. returns ------- self : object Returns the instance itself. """ self._causal_order = None self._adjacency_matrices = None X = check_array(X) lingam_model = self._lingam_model if lingam_model is None: lingam_model = DirectLiNGAM() elif not isinstance(lingam_model, _BaseLiNGAM): raise ValueError("lingam_model must be a subclass of _BaseLiNGAM") phis = self._ar_coefs thetas = self._ma_coefs order = self._order if phis is None or thetas is None: phis, thetas, order, residuals = self._estimate_varma_coefs(X) else: p = phis.shape[0] q = thetas.shape[0] residuals = self._calc_residuals(X, phis, thetas, p, q) model = lingam_model model.fit(residuals) psis, omegas = self._calc_psi_and_omega( model.adjacency_matrix_, phis, thetas, order ) if self._prune: ee = np.dot( np.eye(model.adjacency_matrix_.shape[0]) - model.adjacency_matrix_, residuals.T, ).T psis, omegas = self._pruning(X, ee, order, model.causal_order_) self._ar_coefs = phis self._ma_coefs = thetas self._order = order self._residuals = residuals self._causal_order = model.causal_order_ self._adjacency_matrices = (psis, omegas) return self
[docs] def bootstrap(self, X, n_sampling): """Evaluate the statistical reliability of DAG based on the bootstrapping. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. n_sampling : int Number of bootstrapping samples. Returns ------- result : TimeseriesBootstrapResult Returns the result of bootstrapping. """ X = check_array(X) n_samples = X.shape[0] n_features = X.shape[1] (p, q) = self._order # store initial settings ar_coefs = self._ar_coefs ma_coefs = self._ma_coefs criterion = self._criterion self._criterion = None self.fit(X) fitted_ar_coefs = self._ar_coefs fitted_ma_coefs = self._ma_coefs total_effects = np.zeros([n_sampling, n_features, n_features * (1 + p)]) adjacency_matrices = [] for i in range(n_sampling): sampled_residuals = resample(self._residuals, n_samples=n_samples) resampled_X = np.zeros((n_samples, n_features)) for j in range(n_samples): if j < max(p, q): resampled_X[j, :] = sampled_residuals[j] continue ar = np.zeros((1, n_features)) for t, M in enumerate(fitted_ar_coefs): ar += np.dot(M, resampled_X[j - t - 1, :].T).T ma = np.zeros((1, n_features)) for t, M in enumerate(fitted_ma_coefs): ma += np.dot(M, sampled_residuals[j - t - 1, :].T).T resampled_X[j, :] = ar + sampled_residuals[j] + ma # restore initial settings self._ar_coefs = ar_coefs self._ma_coefs = ma_coefs self.fit(resampled_X) psi = self._adjacency_matrices[0] omega = self._adjacency_matrices[1] am = np.concatenate([*psi, *omega], axis=1) adjacency_matrices.append(am) # total effects for c, to in enumerate(reversed(self._causal_order)): # time t for from_ in self._causal_order[: n_features - (c + 1)]: total_effects[i, to, from_] = self.estimate_total_effect2( n_features, from_, to ) # time t-tau for lag in range(p): for from_ in range(n_features): total_effects[i, to, from_ + n_features * (lag + 1)] = ( self.estimate_total_effect2(n_features, from_, to, lag + 1) ) self._criterion = criterion return VARMABootstrapResult(adjacency_matrices, total_effects, self._order)
[docs] def estimate_total_effect(self, X, E, from_index, to_index, from_lag=0): """Estimate total effect using causal model. Parameters ---------- X : array-like, shape (n_samples, n_features) Original data, where n_samples is the number of samples and n_features is the number of features. E : array-like, shape (n_samples, n_features) Original error data, where n_samples is the number of samples and n_features is the number of features. from_index : Index of source variable to estimate total effect. to_index : Index of destination variable to estimate total effect. Returns ------- total_effect : float Estimated total effect. """ X = check_array(X) n_features = X.shape[1] # Check from/to causal order if from_lag == 0: from_order = self._causal_order.index(from_index) to_order = self._causal_order.index(to_index) if from_order > to_order: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_index={to_index}) " f"is earlier than the source variable (from_index={from_index})." ) # X + lagged X X_joined = np.zeros( (X.shape[0], X.shape[1] * (1 + from_lag + self._order[0] + self._order[1])) ) for p in range(1 + self._order[0]): pos = n_features * p X_joined[:, pos : pos + n_features] = np.roll(X[:, 0:n_features], p, axis=0) for q in range(self._order[1]): pos = n_features * (1 + self._order[0]) + n_features * q X_joined[:, pos : pos + n_features] = np.roll( E[:, 0:n_features], q + 1, axis=0 ) # concat psi and omega psi = self._adjacency_matrices[0] omega = self._adjacency_matrices[1] am = np.concatenate([*psi, *omega], axis=1) # from_index + parents indices parents = np.where(np.abs(am[from_index]) > 0)[0] from_index = from_index if from_lag == 0 else from_index + n_features parents = parents if from_lag == 0 else parents + n_features predictors = [from_index] predictors.extend(parents) # Estimate total effect lr = LinearRegression() lr.fit(X_joined[:, predictors], X_joined[:, to_index]) return lr.coef_[0]
[docs] def estimate_total_effect2(self, n_features, from_index, to_index, from_lag=0): """Estimate total effect using causal model. Parameters ---------- n_features : The number of features. from_index : Index of source variable to estimate total effect. to_index : Index of destination variable to estimate total effect. Returns ------- total_effect : float Estimated total effect. """ # Check from/to causal order if from_lag == 0: from_order = self._causal_order.index(from_index) to_order = self._causal_order.index(to_index) if from_order > to_order: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_index={to_index}) " f"is earlier than the source variable (from_index={from_index})." ) # concat psi and omega psi = self._adjacency_matrices[0] am = np.concatenate([*psi], axis=1) am = np.pad(am, [(0, am.shape[1] - am.shape[0]), (0, 0)]) # from_index + parents indices from_index = from_index if from_lag == 0 else from_index + n_features # Estimate total effect effect = calculate_total_effect(am, from_index, to_index) return effect
[docs] def get_error_independence_p_values(self): """Calculate the p-value matrix of independence between error variables. Returns ------- independence_p_values : array-like, shape (n_features, n_features) p-value matrix of independence between error variables. """ eps = self.residuals_ psi0 = self._adjacency_matrices[0][0] E = np.dot(np.eye(psi0.shape[0]) - psi0, eps.T).T n_samples = E.shape[0] n_features = E.shape[1] p_values = np.zeros([n_features, n_features]) for i, j in itertools.combinations(range(n_features), 2): _, p_value = hsic_test_gamma( np.reshape(E[:, i], [n_samples, 1]), np.reshape(E[:, j], [n_samples, 1]) ) p_values[i, j] = p_value p_values[j, i] = p_value return p_values
def _estimate_varma_coefs(self, X): if self._criterion not in ["aic", "bic", "hqic"]: result = VARMAX(X, order=self._order, trend="c").fit(maxiter=self._max_iter) else: min_value = float("Inf") result = None orders = [ (p, q) for p in range(self._order[0] + 1) for q in range(self._order[1] + 1) ] orders.remove((0, 0)) for order in orders: fitted = VARMAX(X, order=order, trend="c").fit(maxiter=self._max_iter) value = getattr(fitted, self._criterion) if value < min_value: min_value = value result = fitted return ( result.coefficient_matrices_var, result.coefficient_matrices_vma, result.specification["order"], result.resid, ) def _calc_residuals(self, X, ar_coefs, ma_coefs, p, q): X = X.T n_features = X.shape[0] n_samples = X.shape[1] start_index = max(p, q) epsilon = np.zeros([n_features, n_samples]) for t in range(n_samples): if t < start_index: epsilon[:, t] = np.random.normal(size=(n_features)) continue ar = np.zeros([n_features, 1]) for i in range(p): ar += np.dot(ar_coefs[i], X[:, t - i - 1].reshape(-1, 1)) ma = np.zeros([n_features, 1]) for j in range(q): ma += np.dot(ma_coefs[j], epsilon[:, t - j - 1].reshape(-1, 1)) epsilon[:, t] = X[:, t] - (ar.flatten() + ma.flatten()) residuals = epsilon[:, start_index:].T return residuals def _calc_psi_and_omega(self, psi0, phis, thetas, order): psis = [psi0] for i in range(order[0]): psi = np.dot(np.eye(psi0.shape[0]) - psi0, phis[i]) psis.append(psi) omegas = [] for j in range(order[1]): omega = np.dot( np.eye(psi0.shape[0]) - psi0, thetas[j], np.linalg.inv(np.eye(psi0.shape[0]) - psi0), ) omegas.append(omega) return np.array(psis), np.array(omegas) def _pruning(self, X, ee, order, causal_order): """""" n_features = X.shape[1] # join X(t), X(t-1) and e(t-1) X_joined = np.zeros((X.shape[0], X.shape[1] * (1 + order[0] + order[1]))) for p in range(1 + order[0]): pos = n_features * p X_joined[:, pos : pos + n_features] = np.roll(X[:, 0:n_features], p, axis=0) for q in range(order[1]): pos = n_features * (1 + order[0]) + n_features * q X_joined[:, pos : pos + n_features] = np.roll( ee[:, 0:n_features], q + 1, axis=0 ) # pruned by adaptive lasso psi_omega = np.zeros((n_features, n_features * (1 + order[0] + order[1]))) for i, target in enumerate(causal_order): predictors = [ j for j in range(X_joined.shape[1]) if j not in causal_order[i:] ] # adaptive lasso coef = predict_adaptive_lasso(X_joined, predictors, target) psi_omega[target, predictors] = coef # split psi and omega psis = np.zeros(((1 + order[0]), n_features, n_features)) for p in range(1 + order[0]): pos = n_features * p psis[p] = psi_omega[:, pos : pos + n_features] omegas = np.zeros((order[1], n_features, n_features)) for q in range(order[1]): pos = n_features * (1 + order[0]) + n_features * q omegas[q] = psi_omega[:, pos : pos + n_features] return psis, omegas @property def causal_order_(self): """Estimated causal ordering. Returns ------- causal_order_ : array-like, shape (n_features) The causal order of fitted model, where n_features is the number of features. """ return self._causal_order @property def adjacency_matrices_(self): """Estimated adjacency matrix. Returns ------- adjacency_matrices_ : array-like, shape ((p, n_features, n_features), (q, n_features, n_features)) The adjacency matrix psi and omega of fitted model, where n_features is the number of features. """ return self._adjacency_matrices @property def residuals_(self): """Residuals of regression. Returns ------- residuals_ : array-like, shape (n_samples) Residuals of regression, where n_samples is the number of samples. """ return self._residuals
[docs] class VARMABootstrapResult(BootstrapResult): """The result of bootstrapping for Time series algorithm."""
[docs] def __init__(self, adjacency_matrices, total_effects, order): """Construct a BootstrapResult. Parameters ---------- adjacency_matrices : array-like, shape (n_sampling) The adjacency matrix list by bootstrapping. total_effects : array-like, shape (n_sampling) The total effects list by bootstrapping. """ self._order = order super().__init__(adjacency_matrices, total_effects)
[docs] def get_paths( self, from_index, to_index, from_lag=0, to_lag=0, min_causal_effect=None ): """Get all paths from the start variable to the end variable and their bootstrap probabilities. Parameters ---------- from_index : int Index of the variable at the start of the path. to_index : int Index of the variable at the end of the path. from_lag : int Number of lag at the start of the path. ``from_lag`` should be greater than or equal to ``to_lag``. to_lag : int Number of lag at the end of the path. ``from_lag`` should be greater than or equal to ``to_lag``. min_causal_effect : float, optional (default=None) Threshold for detecting causal direction. Causal directions with absolute values of causal effects less than ``min_causal_effect`` are excluded. Returns ------- paths : dict List of path and bootstrap probability. The dictionary has the following format:: {'path': [n_paths], 'effect': [n_paths], 'probability': [n_paths]} where ``n_paths`` is the number of paths. """ # check parameters if min_causal_effect is None: min_causal_effect = 0.0 else: if not 0.0 < min_causal_effect: raise ValueError("min_causal_effect must be an value greater than 0.") if to_lag > from_lag: raise ValueError("from_lag should be greater than or equal to to_lag.") if to_lag == from_lag: if to_index == from_index: raise ValueError("The same variable is specified for from and to.") # Find all paths from from_index to to_index paths_list = [] effects_list = [] for am in self._adjacency_matrices: n_features = am.shape[0] expansion_m_size = n_features * (self._order[0] + 1) expansion_m = np.zeros((expansion_m_size, expansion_m_size)) n_lags = int(expansion_m_size / n_features) - 1 for i in range(n_lags + 1): for j in range(i, n_lags + 1): row = n_features * i col = n_features * j lag = col - row expansion_m[row : row + n_features, col : col + n_features] = am[ 0:n_features, lag : lag + n_features ] paths, effects = find_all_paths( expansion_m, int(n_features * from_lag + from_index), int(n_features * to_lag + to_index), min_causal_effect, ) # Convert path to string to make them easier to handle. paths_list.extend(["_".join(map(str, p)) for p in paths]) effects_list.extend(effects) paths_list = np.array(paths_list) effects_list = np.array(effects_list) # Count paths paths_str, counts = np.unique(paths_list, axis=0, return_counts=True) # Sort by count order = np.argsort(-counts) probs = counts[order] / len(self._adjacency_matrices) paths_str = paths_str[order] # Calculate median of causal effect for each path effects = [ np.median(effects_list[np.where(paths_list == p)]) for p in paths_str ] result = { "path": [[int(i) for i in p.split("_")] for p in paths_str], "effect": effects, "probability": probs.tolist(), } return result