Source code for lingam.rcd

"""
Python implementation of the LiNGAM algorithms.
The LiNGAM Project: https://sites.google.com/view/sshimizu06/lingam
"""

import itertools
import numbers
import warnings

import numpy as np
from scipy.optimize import fmin_l_bfgs_b
from scipy.stats import pearsonr, shapiro
from sklearn.linear_model import LinearRegression
from sklearn.utils import check_array, resample

from .bootstrap import BootstrapResult
from .hsic import get_gram_matrix, get_kernel_width, hsic_test_gamma, hsic_teststat
from .utils import predict_adaptive_lasso, f_correlation, calculate_total_effect


[docs] class RCD: """Implementation of RCD Algorithm [1]_ References ---------- .. [1] T.N.Maeda and S.Shimizu. RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders. In Proc. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS2020), Palermo, Sicily, Italy. PMLR 108:735-745, 2020. """
[docs] def __init__( self, max_explanatory_num=2, cor_alpha=0.01, ind_alpha=0.01, shapiro_alpha=0.01, MLHSICR=False, bw_method="mdbs", independence="hsic", ind_corr=0.5, ): """Construct a RCD model. Parameters ---------- max_explanatory_num : int, optional (default=2) Maximum number of explanatory variables. cor_alpha : float, optional (default=0.01) Alpha level for pearson correlation. ind_alpha : float, optional (default=0.01) Alpha level for HSIC. shapiro_alpha : float, optional (default=0.01) Alpha level for Shapiro-Wilk test. MLHSICR : bool, optional (default=False) If True, use MLHSICR for multiple regression, if False, use OLS for multiple regression. bw_method : str, optional (default=``mdbs``) The method used to calculate the bandwidth of the HSIC. * ``mdbs`` : Median distance between samples. * ``scott`` : Scott's Rule of Thumb. * ``silverman`` : Silverman's Rule of Thumb. independence : {'hsic', 'fcorr'}, optional (default='hsic') Methods to determine independence. If 'hsic' is set, test for independence by HSIC. If 'fcorr' is set, independence is determined by F-correlation. ind_corr : float, optional (default=0.5) The threshold value for determining independence by F-correlation; independence is determined when the value of F-correlation is below this threshold value. """ # Check parameters if max_explanatory_num <= 0: raise ValueError("max_explanatory_num must be > 0.") if cor_alpha < 0: raise ValueError("cor_alpha must be >= 0.") if ind_alpha < 0: raise ValueError("ind_alpha must be >= 0.") if shapiro_alpha < 0: raise ValueError("shapiro_alpha must be >= 0.") if bw_method not in ("mdbs", "scott", "silverman"): raise ValueError("bw_method must be 'mdbs', 'scott' or 'silverman'.") if independence not in ("hsic", "fcorr"): raise ValueError("independence must be 'hsic' or 'fcorr'.") if ind_corr < 0.0: raise ValueError("ind_corr must be an float greater than 0.") self._max_explanatory_num = max_explanatory_num self._cor_alpha = cor_alpha self._ind_alpha = ind_alpha self._shapiro_alpha = shapiro_alpha self._MLHSICR = MLHSICR self._bw_method = bw_method self._ancestors_list = None self._adjacency_matrix = None # DEBAG: self._adjacency_matrix_no_lc = None self._independence = independence self._ind_corr = ind_corr
[docs] def fit(self, X): """Fit the model to X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- self : object Returns the instance itself. """ # Check parameters X = check_array(X) # Extract a set of ancestors of each variable M = self._extract_ancestors(X) # Extract parents (direct causes) from the set of ancestors. P = self._extract_parents(X, M) # Find the pairs of variables affected by the same latent confounders. C = self._extract_vars_sharing_confounders(X, P) self._ancestors_list = M return self._estimate_adjacency_matrix(X, P, C)
def _get_common_ancestors(self, M, U): """Get the set of common ancestors of U""" Mj_list = [M[xj] for xj in U] return set.intersection(*Mj_list) def _get_resid_and_coef(self, X, endog_idx, exog_idcs): """Get the residuals and coefficients of the ordinary least squares method""" lr = LinearRegression() lr.fit(X[:, exog_idcs], X[:, endog_idx]) resid = X[:, endog_idx] - lr.predict(X[:, exog_idcs]) return resid, lr.coef_ def _get_residual_matrix(self, X, U, H_U): if len(H_U) == 0: return X Y = np.zeros_like(X) for xj in U: Y[:, xj], _ = self._get_resid_and_coef(X, xj, list(H_U)) return Y def _is_non_gaussianity(self, Y, U): """Test whether a variable is generated from a non-Gaussian process using the Shapiro-Wilk test""" for xj in U: if shapiro(Y[:, xj])[1] > self._shapiro_alpha: return False return True def _is_correlated(self, a, b): """Estimate that the two variables are linearly correlated using the Pearson's correlation""" return pearsonr(a, b)[1] < self._cor_alpha def _exists_ancestor_in_U(self, M, U, xi, xj_list): # Check xi is not in Mj, the ancestor of xj. for xj in xj_list: if xi in M[xj]: return True # Check if xj_list is a subset of Mi, the ancestor of xi. if set(xj_list) == set(xj_list) & M[xi]: return True return False def _is_independent(self, X, Y): is_independent = False if self._independence == "hsic": _, p = hsic_test_gamma(X, Y, bw_method=self._bw_method) is_independent = p > self._ind_alpha elif self._independence == "fcorr": f_corr = f_correlation(X, Y) is_independent = f_corr < self._ind_corr return is_independent def _get_resid_and_coef_by_MLHSICR(self, Y, xi, xj_list): """Get the residuals and coefficients by minimizing the sum of HSICs using the L-BFGS method.""" n_samples = Y.shape[0] width_list = [] Lc_list = [] for xj in xj_list: yj = np.reshape(Y[:, xj], [n_samples, 1]) width_xj = get_kernel_width(yj) _, Lc = get_gram_matrix(yj, width_xj) width_list.append(width_xj) Lc_list.append(Lc) _, initial_coef = self._get_resid_and_coef(Y, xi, xj_list) width_xi = get_kernel_width(np.reshape(Y[:, xi], [n_samples, 1])) # Calculate the sum of the Hilbert-Schmidt independence criterion def sum_empirical_hsic(coef): resid = Y[:, xi] width = width_xi for j, xj in enumerate(xj_list): resid = resid - coef[j] * Y[:, xj] width = width - coef[j] * width_list[j] _, Kc = get_gram_matrix(np.reshape(resid, [n_samples, 1]), width) objective = 0.0 for j, xj in enumerate(xj_list): objective += hsic_teststat(Kc, Lc_list[j], n_samples) return objective # Estimate coefficients by minimizing the sum of HSICs using the L-BFGS method. coefs, _, _ = fmin_l_bfgs_b( func=sum_empirical_hsic, x0=initial_coef, approx_grad=True ) resid = Y[:, xi] for j, xj in enumerate(xj_list): resid = resid - coefs[j] * Y[:, xj] return resid, coefs def _is_independent_of_resid(self, Y, xi, xj_list): """Check whether the residuals obtained from multiple regressions are independent""" n_samples = Y.shape[0] # Multiple Regression with OLS. is_all_independent = True resid, _ = self._get_resid_and_coef(Y, xi, xj_list) for xj in xj_list: if not self._is_independent( np.reshape(resid, [n_samples, 1]), np.reshape(Y[:, xj], [n_samples, 1]) ): is_all_independent = False break if is_all_independent: return True elif len(xj_list) == 1 or self._MLHSICR is False: return False # Multiple Regression with MLHSICR. resid, _ = self._get_resid_and_coef_by_MLHSICR(Y, xi, xj_list) for xj in xj_list: if not self._is_independent( np.reshape(resid, [n_samples, 1]), np.reshape(Y[:, xj], [n_samples, 1]) ): return False return True def _extract_ancestors(self, X): """Extract a set of ancestors of each variable""" n_features = X.shape[1] M = [set() for i in range(n_features)] l = 1 hu_history = {} while True: changed = False U_list = itertools.combinations(range(n_features), l + 1) for U in U_list: U = list(U) U.sort() # Get the set of common ancestors of U H_U = self._get_common_ancestors(M, U) if tuple(U) in hu_history and H_U == hu_history[tuple(U)]: continue Y = self._get_residual_matrix(X, U, H_U) # Test whether a variable is generated from a non-Gaussian process using the Shapiro-Wilk test if not self._is_non_gaussianity(Y, U): continue # Estimate that the two variables are linearly correlated using the Pearson's correlation is_cor = True for xi, xj in itertools.combinations(U, 2): if not self._is_correlated(Y[:, xi], Y[:, xj]): is_cor = False break if not is_cor: continue sink_set = [] for xi in U: xj_list = list(set(U) - set([xi])) if self._exists_ancestor_in_U(M, U, xi, xj_list): continue # Check whether the residuals obtained from multiple regressions are independent if self._is_independent_of_resid(Y, xi, xj_list): sink_set.append(xi) if len(sink_set) == 1: xi = sink_set[0] xj_list = list(set(U) - set(sink_set)) if not M[xi] == M[xi] | set(xj_list): M[xi] = M[xi] | set(xj_list) changed = True hu_history[tuple(U)] = H_U if changed: l = 1 elif l < self._max_explanatory_num: l += 1 else: break return M def _is_parent(self, X, M, xj, xi): if len(M[xi] - set([xj])) > 0: zi, _ = self._get_resid_and_coef(X, xi, list(M[xi] - set([xj]))) else: zi = X[:, xi] if len(M[xi] & M[xj]) > 0: wj, _ = self._get_resid_and_coef(X, xj, list(M[xi] & M[xj])) else: wj = X[:, xj] # Check if zi and wj are correlated return self._is_correlated(wj, zi) def _extract_parents(self, X, M): """Extract parents (direct causes) from a set of ancestors""" n_features = X.shape[1] P = [set() for i in range(n_features)] for xi in range(n_features): for xj in M[xi]: # Check if xj is the parent of xi if self._is_parent(X, M, xj, xi): P[xi].add(xj) return P def _get_resid_to_parent(self, X, idx, P): if len(P[idx]) == 0: return X[:, idx] resid, _ = self._get_resid_and_coef(X, idx, list(P[idx])) return resid def _extract_vars_sharing_confounders(self, X, P): """Find the pairs of variables affected by the same latent confounders.""" n_features = X.shape[1] C = [set() for i in range(n_features)] for i, j in itertools.combinations(range(n_features), 2): if (i in P[j]) or (j in P[i]): continue resid_xi = self._get_resid_to_parent(X, i, P) resid_xj = self._get_resid_to_parent(X, j, P) if self._is_correlated(resid_xi, resid_xj): C[i].add(j) C[j].add(i) return C def _estimate_adjacency_matrix(self, X, P, C): """Estimate adjacency matrix by causal parents and confounders. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ # Check parents n_features = X.shape[1] B = np.zeros([n_features, n_features], dtype="float64") for xi in range(n_features): xj_list = list(P[xi]) xj_list.sort() if len(xj_list) == 0: continue _, coef = self._get_resid_and_coef(X, xi, xj_list) for j, xj in enumerate(xj_list): B[xi, xj] = coef[j] # DEBAG: self._adjacency_matrix_no_lc = B.copy() # Check confounders for xi in range(n_features): xj_list = list(C[xi]) xj_list.sort() if len(xj_list) == 0: continue for xj in xj_list: B[xi, xj] = np.nan self._adjacency_matrix = B return self def estimate_total_effect(self, X, from_index, to_index): # Check parameters X = check_array(X) # Check from/to ancestors if to_index in self._ancestors_list[from_index]: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_index={to_index}) " f"is earlier than the source variable (from_index={from_index})." ) # Check confounders if True in np.isnan(self._adjacency_matrix[from_index]): warnings.warn( f"The estimated causal effect may be incorrect because " f"the source variable (from_index={from_index}) is influenced by confounders." ) return np.nan # from_index + parents indices parents = np.where(np.abs(self._adjacency_matrix[from_index]) > 0)[0] predictors = [from_index] predictors.extend(parents) # Estimate total effect coefs = predict_adaptive_lasso(X, predictors, to_index) return coefs[0] def estimate_total_effect2(self, from_index, to_index): # Check from/to ancestors if to_index in self._ancestors_list[from_index]: warnings.warn( f"The estimated causal effect may be incorrect because " f"the causal order of the destination variable (to_index={to_index}) " f"is earlier than the source variable (from_index={from_index})." ) # Check confounders if True in np.isnan(self._adjacency_matrix[from_index]): warnings.warn( f"The estimated causal effect may be incorrect because " f"the source variable (from_index={from_index}) is influenced by confounders." ) return np.nan effect = calculate_total_effect(self._adjacency_matrix, from_index, to_index) return effect
[docs] def get_error_independence_p_values(self, X): """Calculate the p-value matrix of independence between error variables. Parameters ---------- X : array-like, shape (n_samples, n_features) Original data, where n_samples is the number of samples and n_features is the number of features. Returns ------- independence_p_values : array-like, shape (n_features, n_features) p-value matrix of independence between error variables. """ # Check parameters X = check_array(X) n_samples = X.shape[0] n_features = X.shape[1] E = X - np.dot(self._adjacency_matrix, X.T).T nan_cols = list(set(np.argwhere(np.isnan(self._adjacency_matrix)).ravel())) p_values = np.zeros([n_features, n_features]) for i, j in itertools.combinations(range(n_features), 2): if i in nan_cols or j in nan_cols: p_values[i, j] = np.nan p_values[j, i] = np.nan else: _, p_value = hsic_test_gamma( np.reshape(E[:, i], [n_samples, 1]), np.reshape(E[:, j], [n_samples, 1]), ) p_values[i, j] = p_value p_values[j, i] = p_value return p_values
@property def ancestors_list_(self): """Estimated ancestors list. Returns ------- ancestors_list_ : array-like, shape (n_features) The list of causal ancestors sets, where n_features is the number of features. """ return self._ancestors_list @property def adjacency_matrix_(self): """Estimated adjacency matrix. Returns ------- adjacency_matrix_ : array-like, shape (n_features, n_features) The adjacency matrix B of fitted model, where n_features is the number of features. Set np.nan if order is unknown. """ return self._adjacency_matrix
[docs] def bootstrap(self, X, n_sampling): """Evaluate the statistical reliability of DAG based on the bootstrapping. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. n_sampling : int Number of bootstrapping samples. Returns ------- result : BootstrapResult Returns the result of bootstrapping. """ # Check parameters X = check_array(X) if isinstance(n_sampling, (numbers.Integral, np.integer)): if not 0 < n_sampling: raise ValueError("n_sampling must be an integer greater than 0.") else: raise ValueError("n_sampling must be an integer greater than 0.") # Bootstrapping adjacency_matrices = np.zeros([n_sampling, X.shape[1], X.shape[1]]) total_effects = np.zeros([n_sampling, X.shape[1], X.shape[1]]) for i in range(n_sampling): resampled_X = resample(X) self.fit(resampled_X) adjacency_matrices[i] = self._adjacency_matrix # Calculate total effects for to, ancestors in enumerate(self._ancestors_list): for from_ in ancestors: total_effects[i, to, from_] = self.estimate_total_effect2(from_, to) return BootstrapResult(adjacency_matrices, total_effects)